Biochemical evaluation of vitamin D levels in pre diabetes, type 2 diabetes mellitus and its correlation with glycated hemoglobin

Suresh Nayak 1, Ajit Thakur 2,*, Gayathri. 1, Prithvi Nayak 4

1Associate Professor, Dept. of Physiology, Dr. BR Ambedkar Medical College, Bengaluru, Karnataka, 2Assistant Professor, Dept. of Biochemistry, Jaipur National University Institute for Medical Sciences and Research Centre, Jaipur, Rajasthan, 3Senior Paediatrician, District Hospital Chikkaballapur, Karnataka, 4Pranic Healer, GMCKS Pranic Healing Centre, Mysore, Karnataka, India

*Corresponding Author: Ajit Thakur
Email: ajit150684@gmail.com

Received: 9th August, 2018 Accepted: 17th August, 2018

Abstract
Introduction: Globally, 1 billion people are suffering with deficiency or insufficiency of vitamin D. Vitamin D deficiency is also associated with metabolic disorders. This study evaluates Vitamin D levels in prediabetes, T2DM patients and its correlation with HbA1c.

Materials and Methods: This study was done in Department of Physiology in association with Department of Endocrinology, JNU Institute of Medical Sciences & Research Center, Jaipur. A total of 155 subjects were enrolled into the study. They were divided into three groups, 65 age and gender matched healthy subjects were taken as group I (controls) (HbA1c: 5.5 to 6.5 %), 45 prediabetic subjects were taken as group II (HbA1c: 6.5 to 7.5 %) and 45 T2DM subjects were taken as group III (HbA1c: >7.5%). Age of the study subjects was 45 to 65 years. Serum sample was used for the estimation of random sugar (GOD-POD method) by using ERBA chemistry analyzer, vitamin D by ELISA method, using mini VIDAS and EDTA sample for HbA1c by using BIORAD D10.

Results: In this study, random blood sugar and HbA1c levels were significantly elevated in pre diabetic (group II), T2DM (group III) subjects compared with controls (group I). Significant reduction was observed in prediabetic, T2DM subjects compared to controls in respect to vitamin D levels. Negative correlation was observed between HbA1c and vitamin D.

Conclusion: In conclusion, the results of this study showed, significant reduction and negative correlation between serum vitamin D levels and HbA1c in prediabetic and T2DM patients. This study results indicates that there may be need to screen pre diabetic and T2DM patients with poor glycemic control for Vitamin D status.

Keywords: Glycated hemoglobin, Glycemic control, T2DM, Vitamin D deficiency.

Introduction
Globally, 1 billion people are suffering with deficiency or insufficiency vitamin D. Vitamin D deficiency, emerging as one of the nutritional risk factors for IR and T2DM. In spite of adequate sunlight exposure, studies have reported that prevalent findings of vitamin D deficiency in Indian population.

Vitamin D plays an important role in many physiological functions, in addition to its role in blood calcium homeostasis. The diverse actions of vitamin D are mainly due to presence of its receptors in almost all tissues. Studies have reported that vitamin D plays a complex physiological role in humans. It is involved in synthesis and secretion of insulin, modulation of inflammatory response, cell maturation and differentiation.

Deficiency of vitamin D causes osteoporosis, increases the risk of bone fracture, muscle weakness, malignancies, chronic inflammatory and autoimmune diseases, metabolic disorders like T2DM, Syndrome X, hypertension and CVD etc. Studies have reported that there is an association between poor glycemic control and progression to diabetes mellitus and vitamin D deficiency. Hence, vitamin D is considered as one of the potential modifier of diabetes risk. Although the exact mechanism is not clear, the association of reduced vitamin D levels in T2DM may be mediated through effects on blood glucose homeostasis and direct effect of vitamin D on the beta-cell function, and thus insulin secretion. Studies found that vitamin D deficiency leads to insulin resistance (IR). Decreased vitamin D level is associated with markers of impaired glucose metabolism, such as glycated hemoglobin (HbA1c).

There are limited number of studies are available on the vitamin D levels in prediabetes and T2DM subjects. In view of increased prevalence and complications associated with diabetes mellitus, it is required to identify modifiable risk factors and implement effective preventive measures. The present study was undertaken to evaluate vitamin D levels in prediabetes, type 2 diabetes mellitus patients and its correlation with HbA1c.

Materials and Methods
A case-control study, done in Department of Physiology in association with Department of Endocrinology, JNU Institute of Medical Sciences & Research Center, Jaipur. A total of 155 subjects were enrolled into the study. They were divided into three...
groups, 65 age and gender matched healthy subjects were taken as group I (controls) (HbA1c: 5.5 to 6.5%), 45 prediabetic subjects were taken as group II (HbA1c: 6.5 to 7.5%) and 45 T2DM subjects were taken as group III (HbA1c: >7.5%). Age of the study subjects was 45 to 65 years. Patients with a history of hypertension, renal impairment, autoimmune disorders, cerebrovascular diseases, acute respiratory failure, previous vascular events (angina, myocardial infarction, acute arterial occlusion) were excluded from the study. A detailed clinical and physical examination was done for all study participants. This study was approved by the Institutional Ethical Committee. After obtaining written informed consent from study participants, 5 mL random venous blood sample is collected from all subjects in vacutainers, 2 mL in plain tube and 3 mL in EDTA tube. Samples were centrifuged at 3000 rpm for 10 minutes to obtain serum. The separated serum sample was used for the estimation of random sugar (GOD-POD method) by using ERBA chemistry analyzer, vitamin D by ELISA method, using mini VIDAS and EDTA sample is used for estimation of HbA1c by using BIORAD-D10.

Statistical Analysis

Data was expressed as mean ±SD. P value <0.05 is considered as statistically significant. Pearson’s correlation coefficient for correlation between vitamin D and HbA1c. Analysis was done by using SPSS software version 20.0.

Results

Distribution of vitamin D in study groups were presented in table 1. Significantly elevated levels of Random blood sugar and HbA1c levels were observed in prediabetics (group I), T2DM (group II) subjects compared with controls (group III). Significant reduction was observed in prediabetics, T2DM subjects compared to controls in respect to vitamin D levels (Table 2). Negative correlation was observed between HbA1c and vitamin D (Table 3).

Discussion

The present study was aimed to evaluate the Vitamin D levels in prediabetes, type 2 diabetes mellitus patients and its correlation with HbA1c. The study results showed that there is a significant reduction in vitamin D levels in prediabetes, T2DM patients compared to controls\(^{13-15}\) and negative correlation between vitamin D levels and HbA1c.

Vitamin D plays a significant role in the glucose metabolism. In the beta-cells of the pancreas, vitamin D stimulates the secretion of insulin and increases intracellular Ca\(^{2+}\) levels, which attenuates the synthesis of insulin. Vitamin D also required for insulin sensitivity in peripheral uscle and adipose tissue. Low-

Table 1: Distribution of vitamin D levels in study groups

<table>
<thead>
<tr>
<th>Vitamin D levels (ng/mL)</th>
<th>Group I Controls (n=65)</th>
<th>Group II Prediabetes (n=45)</th>
<th>Group III T2DM (n=45)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Number</td>
<td>(%)</td>
<td>Number</td>
</tr>
<tr>
<td>Deficiency (10-20 ng/mL)</td>
<td>12</td>
<td>18.4</td>
<td>25</td>
</tr>
<tr>
<td>Insufficient (20-30 ng/mL)</td>
<td>17</td>
<td>26.1</td>
<td>11</td>
</tr>
<tr>
<td>Sufficient (>30 ng/mL)</td>
<td>36</td>
<td>55.3</td>
<td>09</td>
</tr>
</tbody>
</table>

Table 2: Comparison of study parameters between controls, pre diabetic and T2DM patients

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Group I Controls (n=65) Mean±SD</th>
<th>Group II Prediabetes (n=45) Mean±SD</th>
<th>Group III T2DM (n=45) Mean±SD</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age (years)</td>
<td>41.7±8.5</td>
<td>43.6±8.4</td>
<td>45.2±11.1</td>
</tr>
<tr>
<td>RBS (mg/dL)</td>
<td>105.6±16.2</td>
<td>141.1±22.8</td>
<td>199.5±32.5</td>
</tr>
<tr>
<td>HbA1c (%)</td>
<td>5.8±0.3</td>
<td>7.04±0.2</td>
<td>8.5±0.8</td>
</tr>
<tr>
<td>Vitamin D (ng/mL)</td>
<td>32.6±12.5</td>
<td>21.3±7.5</td>
<td>14.6±4.8</td>
</tr>
</tbody>
</table>

p value ≤0.05 considered as significant

a*= Controls vs Pre Diabetes
b*= Pre Diabetes vs T2DM

Table 3: Pearson’s Correlation between Vitamin D and HbA1c

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Correlation Coefficient (r)</th>
</tr>
</thead>
<tbody>
<tr>
<td>HbA1c</td>
<td>- 0.418**</td>
</tr>
</tbody>
</table>

Correlation is significant at the 0.01 level (2-tailed).
grade inflammation is seen in type 2 diabetes mellitus, vitamin D is an anti-inflammatory in nature, it exerts its beneficial effects on glycemic control and prevention of complications. Vitamin D influences the insulin sensitivity through several mechanisms. This is due to presence of vitamin D receptors in pancreatic β-cells and vitamin D response element in human insulin gene support a direct effect of vitamin D on synthesis and secretion of insulin. Vitamin D stimulates the expression of insulin receptors and increases the transportation of glucose in peripheral tissues.16,17

Vitamin D plays an important role in the regulation of blood calcium homeostasis and it is also involved in the regulation of around 200 genes. In India, inadequate exposure to sunlight, obesity, sedentary lifestyle, decreased physical activity, malabsorption, skin pigmentation are possible reasons for reduced vitamin D levels.18 Reduced vitamin D levels accelerates the systemic inflammation and worsens glycemic control among diabetics enhancing their complications.19

The progression of prediabetes to type 2 diabetes occurs over many years before the development of frank diabetes. Depending upon the degree of insulin resistance and reduced insulin secretion this may progress to diabetes mellitus. Vitamin D exerts its action in a variety of cells through its receptor. Molecular evidences have found that pancreatic β-cells express both cytoplasmic/nuclear VDR, thus enhances β-cells function. Additionally, vitamin D protects pancreatic β cells from immune attack. Vitamin D inhibits the release of the pro-inflammatory cytokines, TNFα and regulates the activity of TLR and TLR 4 proteins. Studies indicate that Vitamin D has importance not only for cardiovascular health, but also for the immune response. Several studies support that supplementation of vitamin D may affect glucose homeostasis and improve insulin resistance.20

Lack of physical exercise is also one of the common risk factor in the etiology of diabetes mellitus and vitamin D deficiency. Vitamin D status would be improved by physical exercise, and also helpful to prevent development and progression of T2DM.21,22

In this study, HbA1c levels were significantly elevated in prediabetes and T2DM than controls and it is negatively correlated with vitamin D in prediabetes and type 2 diabetes mellitus patients. The present study results are in accordance with other studies.23,24

The results of the present study suggests that, maintenance of vitamin D levels in normal ranges may be helpful to keep blood sugar in normal range. Individuals with increased HbA1c should be screened for vitamin D status and vice versa. Vitamin D supplementation can delay the onset or progression of diabetes mellitus needs to be established.

Conclusion

In conclusion, the results of this study showed, significantly elevated levels of Random blood sugar and HbA1c levels were observed in prediabetics, T2DM subjects compared with controls. Significant reduction was observed in prediabetics, T2DM subjects compared to controls in respect to vitamin D levels. Negative correlation was observed between HbA1c and vitamin D. This study results indicates that there may be need to screen prediabetic and T2DM patients with poor glycemic control for Vitamin D status. The main limitation of this study is small sample size. Therefore, further large prospective studies are needed.

Conflict of Interest: Nil

Acknowledgements: Nil

Funding: Nil

References
